Managing loan customers using misclassification patterns of credit scoring model
نویسندگان
چکیده
A number of credit scoring models have been developed to evaluate credit risk of new loan applicants and existing loan customers, respectively. This study proposes a method to manage existing customers by using misclassification patterns of credit scoring model. We divide two groups of customers, the currently good and bad credit customers, into two subgroups, respectively, according to whether their credit status is misclassified or not by the neural network model. In addition, we infer the characteristics of each subgroup and propose management strategies corresponding to each subgroup. q 2004 Published by Elsevier Ltd.
منابع مشابه
Matrix Sequential Hybrid Credit Scorecard Based on Logistic Regression and Clustering
The Basel II Accord pointed out benefits of credit risk management through internal models to estimate Probability of Default (PD). Banks use default predictions to estimate the loan applicants’ PD. However, in practice, PD is not useful and banks applied credit scorecards for their decision making process. Also the competitive pressures in lending industry forced banks to use profit scorecards...
متن کاملIdentifying patterns of the dynamic credit risk of banks customers and financial institutions: case study- an Iranian bank
Credit risk assessment has always been one of the most important concerns of banks. Widely used models such as financial models have been used to assess credit risk so far. But increasing non-performing loans indicates that today these models cannot assess the credit risk of customers. Inconstant and uncertain environmental, social and political factors affect customer behavior and change custo...
متن کاملUsing the Hybrid Model for Credit Scoring (Case Study: Credit Clients of microloans, Bank Refah-Kargeran of Zanjan, Iran)
In any country, commercial banks lay the groundwork for economic growth by collecting national resources and capitals and allocating them to different economic sectors. Optimal allocation of resources is especially important in achieving this goal. Banks with an effective and dynamic system of customer assessment can efficiently allocate their resources to customers regardless of their geograph...
متن کاملCredit Scoring Using Ensemble of Various Classifiers on Reduced Feature Set
Credit scoring methods are widely used for evaluating loan applications in financial and banking institutions. Credit score identifies if applicant customers belong to good risk applicant group or a bad risk applicant group. These decisions are based on the demographic data of the customers, overall business by the customer with bank, and loan payment history of the loan applicants. The advanta...
متن کاملInvestigating the missing data effect on credit scoring rule based models: The case of an Iranian bank
Credit risk management is a process in which banks estimate probability of default (PD) for each loan applicant. Data sets of previous loan applicants are built by gathering their data, and these internal data sets are usually completed using external credit bureau’s data and finally used for estimating PD in banks. There is also a continuous interest for bank to use rule based classifiers to b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 26 شماره
صفحات -
تاریخ انتشار 2004